Mark Scheme (Results)

January 2018

Pearson Edexcel International GCSE Mathematics A (4MA0)
Higher Paper 3H
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2018
Publications Code 4MA0_3H_1801_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations
- cao – correct answer only
- ft – follow through
- isw – ignore subsequent working
- SC - special case
- oe – or equivalent (and appropriate)
- dep – dependent
- indep – independent
- eeo – each error or omission
- **No working**
 If no working is shown then correct answers normally score full marks.
 If no working is shown then incorrect (even though nearly correct) answers score no marks.

- **With working**
 If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
 If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.
 Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
 If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
 If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
 If there is no answer on the answer line then check the working for an obvious answer.

- **Ignoring subsequent work**
 It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
 It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
 Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- **Parts of questions**
 Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (a)</td>
<td>$1 400 000 \div 125 000$ or $14 \div 125 000$ or $14 \times 1000 \times 100 (= 1 400 000)$ or $125 000 \div 1000 \div 100 (= 1.25)$</td>
<td>11.2</td>
<td>2</td>
<td>M1 for a first step; can be implied by an answer with digits 112</td>
</tr>
<tr>
<td>1 (a)</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>(b)</td>
<td>$(4.8 \times 1000 \times 100) \div 19.2$ or $4.8 \div (19.2 \times 1000 \times 100)$ oe</td>
<td>25 000</td>
<td>2</td>
<td>M1 for division by 19.2; can be implied by an answer with digits 25</td>
</tr>
<tr>
<td>2 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$2.2587(80006..)$</td>
<td>2.2587(80006..)</td>
<td>2</td>
<td>M1 for 11.245 or 2.204 or 5.102087.. or 2.2587... rounded or truncated to 2 or more decimal places</td>
</tr>
<tr>
<td>3 (a)</td>
<td>$(-7)^2 + 7 \times 5$ or $-7 \times -7 + 7 \times 5$ oe or 49</td>
<td>84</td>
<td>2</td>
<td>M1 for correct substitution or correct evaluation of $(-7)^2$ NB: accept $7(5)$ in place of 7×5</td>
</tr>
<tr>
<td>3 (a)</td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>(b)</td>
<td>$100 = 11^2 + 7q$ oe or $A - p^2 = 7q$ or $100 = 11^2 + 7q$ oe or $-7 = 11^2 - 100$ oe</td>
<td>-3</td>
<td>3</td>
<td>M1 for correct substitution or rearrangement</td>
</tr>
<tr>
<td>3 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
<td>M1 isolating $7q$ in a correct equation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>4 (a)</td>
<td>(80+1)÷2(=40.5(th)) or 80÷2(=40(th))</td>
<td>4</td>
<td>2</td>
<td>M1 or listing numbers and attempt to find median A1</td>
</tr>
<tr>
<td></td>
<td>1×5, 2×12, 3×16, 4×32, 5×15 or 5, 24, 48, 128, 75 or 280 "280"÷80</td>
<td>3.5 oe</td>
<td>3</td>
<td>M1 for at least 4 correct products – may be seen by side of table (products may not be evaluated); M1 dep Allow division by their $\sum f$ provided addition or total under column seen A1 condone rounding to 4 if 3.5 or 280 ÷ 80 is present</td>
</tr>
<tr>
<td></td>
<td>$\frac{32}{80} + \frac{12}{80}$ or $\frac{32+12}{80}$</td>
<td>44/80</td>
<td>2</td>
<td>M1 or for $\frac{44}{n}$ where $n > 44$ or $\frac{m}{80}$ where $m < 80$ A1 for $\frac{44}{80}$ oe or 0.55 or 55%</td>
</tr>
<tr>
<td>5 (a)</td>
<td>3−6y = 2y−7 or 1−2y = $\frac{2y−7}{3}$ e.g. −6y−2y = −7−3 or 3+7 = 2y+6y or −8y = −10 or 8y = 10</td>
<td>1.25 oe</td>
<td>3</td>
<td>M1 for multiplying out brackets in a correct equation or dividing all terms by 3 M1 for isolating the terms in y ft from 3−2y = 2y−7 or 1−6y = 2y−7 A1 dep on M1 awarded</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 5 (b) | | $-3 < x \leq 4$ | 2 | B2 also accept $x > -3$ and $x \leq 4$ or $4 \geq x > -3$
If not B2 then award
B1 for a double-ended inequality which is correct at one end (ignore the other end)
eg. $-3 < x < 4, \quad -3 \leq x \leq 4, \quad -3 < x < 4$
or for an answer of $x > -3$ oe or $x \leq 4$ oe
or the wrong variable in an otherwise correct inequality eg. $-3 < y \leq 4$
SC: Award B1 for $-3 \leq x < 4$ |
| (c) | e.g. $2m \geq 8 - 13$ | $m \geq -2.5$ oe | 2 | M1 for isolating terms in m
in an equation or inequality
eg. $2m \geq -5$
or -2.5 oe
A1 must be an inequality |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 (a)</td>
<td>((QR^2 = 10.6^2 - 5.9^2) = 77.55) (\sqrt{10.6^2 - 5.9^2}) or (\sqrt{77.55})</td>
<td>8.81</td>
<td>3</td>
<td>M1 for squaring and subtracting. M1 dep A1 for 8.806 – 8.81</td>
</tr>
<tr>
<td></td>
<td>(\text{E.g. } \sin R = \frac{5.9}{10.6}) or (\cos R = \frac{8.81}{10.6}) or (\tan R = \frac{5.9}{8.81})</td>
<td>33.8</td>
<td>3</td>
<td>M1 correct trig statement for angle (\text{PRQ}) or for angle (\text{QPR}) M1 complete method to find angle (\text{PRQ}) A1 for 33.8 – 33.82125</td>
</tr>
<tr>
<td>(b)</td>
<td>(\text{E.g. } \sin^{-1}\left(\frac{5.9}{10.6}\right)) or (\cos^{-1}\left(\frac{8.81}{10.6}\right)) or (\tan^{-1}\left(\frac{5.9}{8.81}\right))</td>
<td>12.45</td>
<td>1</td>
<td>B1 12.45 or 12.449</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 7 | $(−2, 11)(−1, 8)(0, 5)(1, 2)(2, −1)(3, −4)$ | Correct line between $x = −2$ and $x = 3$ | 3 | B3 for a correct line between $x = −2$ and $x = 3$
If not B3 then award B2 for a correct line through at least 3 of $(−2, 11)(−1, 8)(0, 5)(1, 2)(2, −1)(3, −4)$
OR for all of $(−2, 11)(−1, 8)(0, 5)(1, 2)(2, −1)(3, −4)$ plotted, not joined
If not B2 then award B1 for for at least 2 correct points stated or calculated (may be in a table) OR
for a line with a gradient of $−3$ OR
for a line drawn with a negative gradient through $(0, 5)$
NB: No mark should be awarded for a line through $(0, 5)$ and $(3, 0)$ |
| 8 | arc centre B cutting BA and BC at (say) P and Q AND arcs centres P and Q of equal radii which intersect at R (R must fall within guidelines) bisector drawn with all necessary arcs | 2 | M1 |

A1 dep
SC: B1 for bisector within guidelines with no arcs
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 9 | $4x + 28 + x - 13 = 180$
$\begin{align*} x &= 33 \\
360 ÷ ("33" - 13) \text{ oe}\end{align*}$ | 18 | 4 | M1 for a correct equation in x
A1 for the correct value of x
M1 (dep on M1) for a correct calculation to find n ft “33”
A1 |
| 10 | $m = -4 \text{ or}$
$2y + 8x = k \ (k \neq 5)$
$\begin{align*} 3 &= "-4" \times 2 + c \text{ or} \\
y - 3 &= "-4"(x - 2) \text{ or} \\
c &= 11\end{align*}$ | $y = -4x + 11$ | 3 | M1 for recognising gradient = -4
e.g. an answer of $y = -4x + c$ with $c \neq 2.5$
M1 (indep) for correct method to find c using their gradient or
$2 \times 3 + 8 \times 2 = k$
A1 oe eg $y - 3 = -4 \times (x - 2), \ 2y + 8x = 22$
NB $L = -4x + 11$ oe scores M1 M1 A0 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>(\frac{23}{100} \times 330\text{ oe} (=75.9)) eg (\frac{23}{100} \times (330 - 75.9)) = 58.443 (\frac{23}{100} \times (330 - 75.9 - 58.443)) = 45.00... 330 - 75.9 - 58.443 - 45.00...</td>
<td>151</td>
<td>M1 for (\frac{23}{100} \times 330\text{ oe}) or 75.9 M1 for a complete method (condone 4 years rather than 3) M2 for 330 × 0.77(^3) or 330 × 0.77(^4) (=116.00..)) If not M2 then award M1 for 330 × 0.77 (254.1(0)) or 330 × 0.77(^2) (195.65(7)) accept (1 – 0.23) as equivalent to 0.77 throughout A1 for 150.6 – 151 SC If no other marks gained, award B1 for 330 × 0.69 oe (227.7) or 330 × 0.31 oe (102.3) or an answer of 102 (.3...)</td>
<td>M1 for dealing with fractions e.g. express LHS as the sum of 2 fractions with denominator of 12 or a multiple of 12 (if brackets expanded, condone 1 error) or express LHS as a single fraction with denominator of 12 or a multiple of 12 (if brackets expanded, condone 1 error) or multiplying both sides by 12 or a multiple of 12 (if brackets expanded, condone 1 error) M1 for dealing with fraction(s) and expanding brackets (condone 1 error in expansion of brackets) A1 dep on M1 gained</td>
</tr>
<tr>
<td>12</td>
<td>(\frac{4(x+4)}{12} + \frac{3(2x+3)}{12}(=7)) e.g. (\frac{4(x+4)+3(2x+3)}{12}(=7)) OR (\frac{4(x+4)+3(2x+3)}{12}(=7)) OR (4(x + 4) + 3(2x + 3) = 7 \times 3 \times 4) e.g. (4x + 16 + 6x + 9 = 7 \times 12) OR (10x + 25 = 7 \times 12)</td>
<td>5.9 oe</td>
<td>3</td>
<td>M1 for dealing with fractions e.g. express LHS as the sum of 2 fractions with denominator of 12 or a multiple of 12 (if brackets expanded, condone 1 error) or express LHS as a single fraction with denominator of 12 or a multiple of 12 (if brackets expanded, condone 1 error) or multiplying both sides by 12 or a multiple of 12 (if brackets expanded, condone 1 error) M1 for dealing with fraction(s) and expanding brackets (condone 1 error in expansion of brackets) A1 dep on M1 gained</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>13 (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>$(3.57 \times 10^7) \div (1.35 \times 10^4) (= 2644.(44...))$ or $35700000 \div 13500$ oe</td>
<td>2.6×10^3</td>
<td>2</td>
<td>M1 or for $2600 - 2644.4$ A1 must be in standard form and in the range $2.6 \times 10^3 - 2.64 \times 10^3$</td>
</tr>
<tr>
<td>14</td>
<td>$11 - 3$</td>
<td></td>
<td>2</td>
<td>M1 for identifying 3 and 11 as LQ and UQ may be circled in list</td>
</tr>
<tr>
<td>15</td>
<td>E.g. $AOC = 360 - 2 \times 90 - 76 (=104)$ or $AOC = 180 - 76 (=104)$ oe “104” $\div 2$</td>
<td>52</td>
<td>3</td>
<td>M1 for a method to find angle AOC M1 (dep) for complete method to find angle ABC</td>
</tr>
</tbody>
</table>

Notes:
- B1: Basic credit
- M1: Moderate credit
- A1: Advanced credit
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>eg 100x = 34.545 and x = 0.345 100x − x = 34.545 − 0.345</td>
<td>Shown by an algebraic method</td>
<td>2</td>
<td>M1 for two decimals that, when subtracted will leave a non-recurring value, and intention to subtract (must show recurring dots or at least 2 of 54 or 45) A1 must see a correct fraction prior to or division must be clearly shown M1 for two decimals that, when subtracted will leave a non-recurring value, and intention to subtract</td>
</tr>
<tr>
<td></td>
<td>Alternative scheme eg 10x = 0.45 1000x = 45.45 1000x − 10x = 45.45 − 0.45 990x = 45 x = 45 990 0.345 = 3 10 + 45 990</td>
<td>Shown by an algebraic method</td>
<td></td>
<td>A1 for a complete method</td>
</tr>
</tbody>
</table>
| 17 | \(x^2 = \frac{2b - a}{7 - am}\) \(x^2 (7 - am) = 2b - a\)

\[7x^2 - 2b = amx^2 - a \text{ or } a - amx^2 = 2b - 7x^2\] | | 4 | M1 for squaring both sides M1 for multiplying by \(7 - am\) in a correct equation allow \(x^2 \times 7 - am = 2b - a\) \(7 - am \times x^2 = 2b - a\) M1 for isolating terms in \(a\) in a correct equation | |
<p>| | (a = \frac{7x^2 - 2b}{mx^2 - 1}) oe | | | A1 or for (a = \frac{2b - 7x^2}{1 - mx^2}) oe with (a) as the subject |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 (a)</td>
<td>(\frac{7}{\sqrt{132}} = \frac{h}{\sqrt{297}}) or (7 \times \frac{\sqrt{297}}{\sqrt{132}}) oe or (7 \div \frac{\sqrt{132}}{\sqrt{297}}) oe</td>
<td>10.5 oe</td>
<td>2</td>
<td>for a correct linear scale factor (\sqrt{297}) or (\sqrt{132}) oe (\sqrt{132}) oe or (\sqrt{297}) oe</td>
</tr>
<tr>
<td></td>
<td>e.g. (567 \div \left(\frac{3}{2} \right)^3) or (567 \times \left(\frac{2}{3} \right)^3)</td>
<td>168</td>
<td>2</td>
<td>M1 for a fully correct method (\sqrt{297}) or (\sqrt{132}) oe or (\sqrt{297}) oe</td>
</tr>
<tr>
<td>19 (a)</td>
<td>(33 \div 10 \ (=3.3)), (39 \div 15 \ (=2.6)), (36 \div 20 \ (=1.8)), (12 \div 15 \ (=0.8))</td>
<td></td>
<td>3</td>
<td>M1 for use of area e.g. correct method for any 2 frequency densities or any 2 correct bars of different widths</td>
</tr>
<tr>
<td></td>
<td>fd 3.3, 2.6, 1.8, 0.8</td>
<td>A fully correct histogram</td>
<td></td>
<td>M1 for at least 3 correct fd or at least 3 correct bars</td>
</tr>
<tr>
<td>19 (b)</td>
<td>(0.75 \times 36 + 12 \ (=39))</td>
<td></td>
<td>2</td>
<td>M1 for a fully correct method to find number of people who travelled more than 30 km</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for (\frac{39}{120}) oe e.g. 0.325, 32.5%</td>
</tr>
<tr>
<td>Alternative method</td>
<td>E.g. “3.3” (\times 2) + “2.6” (\times 3) + “1.8” (\times 4) + “0.8” (\times 3) (= 24) and “1.8” (\times 3) + “0.8” (\times 3) (= 7.8)</td>
<td></td>
<td></td>
<td>M1 dep on at least M1 in (a) ft from their graph using area</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1 for (\frac{39}{120}) oe e.g. 0.325, 32.5%</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
</tbody>
</table>
| 20 (a) | $\sqrt{25 \times 2} + \sqrt{64 \times 2} - \sqrt{100 \times 2}$ or $5\sqrt{2} + 8\sqrt{2} - 10\sqrt{2}$ or $3\sqrt{2}$ | 3 | 2 | M1 for at least 2 out of 3 correct products from those shown or for $3\sqrt{2}$
A1 |
| (b) | $\frac{\sqrt{a} + a}{10\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}$ or $\frac{5\sqrt{a} + a}{10\sqrt{a}} + \frac{a}{10\sqrt{a}}$ or $\frac{\sqrt{a}(5 + \sqrt{a})}{10\sqrt{a}}$ | $\frac{1}{2} + \frac{1}{10}\sqrt{a}$ | 2 | M1 \sqrt{a} for multiplying numerator and denominator by \sqrt{a} (or a multiple of \sqrt{a}) or splitting fraction into 2 parts or taking out \sqrt{a} as a common factor
A1 from correct working
NB. individual fractions need not be in their simplest form |
| 21 | $((10a - b)+(2a-5b))((10a-b)-(2a-5b))$ Or $(10a-b+2a-5b)(10a-b-2a+5b)$
(12$a-6b)(8a+4b)$ | $24(2a-b)(2a+b)$ | 3 | M1 first stage in using difference of 2 squares allow $-2a - 5b$ in place of $-(2a-5b)$
M1 simplifying 2 correct brackets
A1 fully factorised expression from correct working |
| Alternative | $(100a^2 - 10ab - 10ab + b^2)$ or $4a^2 - 10ab - 10ab + 25b^2$ or $-4a^2 + 10ab + 10ab - 25b^2$
$96a^2 - 24b^2$ | $24(2a - b)(2a + b)$ | 3 | M1 expanding one bracket correctly
M1 simplifying 2 correct expansions
A1 fully factorised expression from correct working |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>$\sqrt{\frac{32}{3125}} = \frac{2}{5}$ (\text{oe})
 ((\frac{2}{5})^4 \times \left(1-\frac{2}{5}\right)) (\text{oe}) (= \frac{48}{3125}) (\text{oe})</td>
<td>$\frac{240}{3125}$</td>
<td>3</td>
<td>M1 a correct method to find probability of getting one head
 M1 (dep) for the probability of getting one combination of 4 heads and 1 tail
 A1 (\text{oe}) eg (\frac{48}{625}), 0.0768</td>
</tr>
<tr>
<td>23 (a)</td>
<td>((f(-4)) = \frac{3x-4}{-4-2} = 2) (\text{or})
 ((gf(x) = \frac{4x}{x-2})) (\text{or}) (\frac{4(3x-4)}{5}) (\text{or})</td>
<td>1.6</td>
<td>2</td>
<td>M1 A1 (\text{oe})</td>
</tr>
<tr>
<td></td>
<td>(\frac{3\times 4x}{5}) (\text{or}) (\frac{4x}{5}-2)
 E.g. (\frac{12x}{4x-10}) (\text{oe})</td>
<td>(\frac{6x}{2x-5})</td>
<td>3</td>
<td>M1 for a correct first expression for (fg(x))
 M1 for a correct unsimplified fraction of the form (\frac{ax}{bx-c}) where (a, b) and (c) are integers
 A1 cao
 SC : Award B2 for (\frac{3x}{x-2.5})</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>(c)</td>
<td>[y = \frac{3x}{x-2}] [y(x-2) = 3x] [xy-3x = 2y \text{ or } x(y-3) = 2y]</td>
<td>[x = \frac{3y}{y-2}] [x(y-2) = 3y] [xy - 3y = 2x \text{ or } y(x-3) = 2x]</td>
<td>2x [x-3]</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>[\overline{BX} = \frac{3}{2} \times 4a = (6a) \text{ or } \overline{CX} = \frac{5}{2} \times 4a = (10a) \text{ or } \overline{AX} = \frac{3}{2} \times 4a + 3c = (6a + 3c) \text{ or } \overline{CY} = \overline{OC} + \overline{CY} \text{ or } \overline{OY} = \overline{OC} + 2\overline{AX}]</td>
<td>9c + 12a</td>
<td>3</td>
<td>M1 correct vector, in terms of (a) and/or (c) for (\overline{BX}) or (\overline{CX}) or (\overline{AX}) (need not be simplified) (\overline{OY} = \overline{OC} + \overline{CY} \text{ or } \overline{OY} = \overline{OC} + 2\overline{AX}) (accept (3c) in place of (\overline{OC}) and their (\overline{CY}) and their (\overline{AX}) if clearly stated in terms of (a) and (c)) M1 correct vector for (\overline{CY}) (or (2\overline{AX})) (need not be simplified) implies the award of both method marks A1 for (9c + 12a) or (3(3c + 4a))</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
<td>Answer</td>
<td>Mark</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>25</td>
<td>e.g. angle $AOB = 360 \div 5$ (=72) or angle $ABC = 108$ or angle $OBC = 54$ or angle $COM = 36$
e.g. $AO = \frac{4}{\cos(54)}$ (= 6.8(05...)) oe
$OM = 4 \tan(54)$ (= 5.5(055...)) oe
e.g. tan $APO = \frac{6.8...}{10}$ (angle $APO = 34.2...$)
e.g. tan $OPM = \frac{5.5...}{10}$ (angle $OPM = 28.8...$ or 29)
“34.2” + “28.8” OR
180 – “55.8” – “61.1”</td>
<td>63.1</td>
<td>5</td>
<td>M1 for correct use of angles in a pentagon
M1 for a method to find AO (or BO etc) or OM
M1 for a method to find angle APO or angle OPM OR
for a method to find angle PAO (55.8...) AND angle PMO (61.1...)
M1 for a complete method</td>
</tr>
<tr>
<td>Alternative</td>
<td>e.g. angle $AOB = 360 \div 5$ (=72) or angle $ABC = 108$ or angle $OBC = 54$ or angle $COM = 36$
e.g. $AO = \frac{4}{\cos(54)}$ (= 6.8(05...)) oe
$OM = 4 \tan(54)$ (= 5.5(055...)) oe
e.g. $AP = \sqrt{10^2 + 6.8..^2}$ AND $MP =$
$\sqrt{10^2 + 5.5..^2}$
($= 12.09...$) ($= 11.415...$)
$\cos APM = \frac{12.09..^2 + 11.415..^2 - 12.31..^2}{2 \times 12.09.. \times 11.415..}$ e.g.</td>
<td>63.1</td>
<td>5</td>
<td>A1 for answer in the range 62.9 – 63.2
M1 for correct use of angles in a pentagon
M1 for a method to find AO (or BO etc) or OM
M1 for a method to find AP (or BP etc) AND MP
M1 for a complete method
A1 for answer in the range 62.9 – 63.2</td>
</tr>
</tbody>
</table>