Mark Scheme (Results)

January 2014

Pearson Edexcel International GCSE Mathematics A 4MA0/4HR
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2014
Publications Code UG037791
All the material in this publication is copyright
© Pearson Education Ltd 2014
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate’s response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations
- cao – correct answer only
- ft – follow through
- isw – ignore subsequent working
- SC - special case
- oe – or equivalent (and appropriate)
- dep – dependent
- indep – independent
- eecho – each error or omission
- awrt – anything which rounds to
- **No working**
 If no working is shown then correct answers normally score full marks.
 If no working is shown then incorrect (even though nearly correct) answers score no marks.

- **With working**
 If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
 If it is clear from the working that the “correct” answer has been obtained from incorrect working, award 0 marks.
 Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
 If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
 If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.
 If there is no answer on the answer line then check the working for an obvious answer.

- **Ignoring subsequent work**
 It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
 It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
 Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- **Parts of questions**
 Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.
Apart from Questions 4, 5, 19 and 22, where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (a)</td>
<td></td>
<td></td>
<td>3^5</td>
<td>B1 cao</td>
</tr>
<tr>
<td>(b)</td>
<td>(\frac{7^{14}}{7^6}) or (\frac{7^9}{7^1}) or (7^5 \times 7^3)</td>
<td>(7^8)</td>
<td>2</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
<tr>
<td>2.</td>
<td>4 + 6 + 4 + 7 + 8 + 6 + 7 + 7 (=49) or 9 \times 6 (=54)</td>
<td>(\frac{49 + a}{9}) = 6 or “54” – “49”</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1</td>
<td>M1 for 4 + 6 + 4 + 7 + 8 + a + 6 + 7 + 7 = 49 + a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1 dep</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
<tr>
<td>3. (a)</td>
<td></td>
<td></td>
<td>28</td>
<td>B1</td>
</tr>
<tr>
<td>(b)</td>
<td>36 + 28 or 36 + “28” or 180 – 116</td>
<td>64</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>M1</td>
<td>ft their answer from (a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A1</td>
<td>“116” from 180 – (36 + 28)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
</tbody>
</table>
4. (a) \[
\frac{3 \times 4}{15} + \frac{5 \times 2}{15} \text{ or } \frac{12}{15} + \frac{10}{15}
\]
\[
\frac{22}{15}
\]
M1 Any pair of correct fractions with a denominator a multiple of 15
A1 Dependent on M1

(b) \[
\frac{9}{4} \div \frac{7}{2} = \frac{9 \times 2}{4 \times 7} \text{ or } \frac{9}{4} \times \frac{2}{7}
\]
\[
\frac{18}{28}
\]
M1 Correct improper fractions (may be implied by second M1)
M1 Denominators must be the same.
A1 Award A1 for 9/14 if cancelling seen to have taken place.

(b) Alternative: \[
\frac{9}{4} \div \frac{7}{2} = \frac{9 \times 2}{4 \times 7}
\]
\[
\frac{9}{14}
\]
M1 Correct improper fractions (may be implied by second M1)
M1 Denominators must be the same.
A1 Must lead directly from 2nd M1

Total 5 marks

5. Circular arc, centre B, to intersect both lines AB and BC
Equal length arcs, from intersections on each line, meeting to give a point on the bisector.

M1
A1 dep on M1 Full construction shown.

Total 2 marks
6. (a)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marks</th>
<th>Award</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 \div 1 B1 Accept</td>
<td>10</td>
<td>B1</td>
<td>Accept $\frac{1}{6}$ hour if units stated.</td>
</tr>
<tr>
<td>1 ÷ 0.25 oe</td>
<td>4</td>
<td>M1</td>
<td>Accept $1 \div 15$</td>
</tr>
<tr>
<td>Line at 1.5 km from 0930 to 0940</td>
<td>2</td>
<td>B1</td>
<td>Accept line from 1.5 km at 09 30 to 0 km at 10 00</td>
</tr>
<tr>
<td>Line from 1.5 km at 0940 to 0 km at 1010</td>
<td>2</td>
<td>B1</td>
<td>Accept line from 1.5 km at 09 30 to 0 km at 10 00</td>
</tr>
</tbody>
</table>

Total 5 marks

7. (a)

<table>
<thead>
<tr>
<th>Question</th>
<th>Marks</th>
<th>Award</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: (0, −1), (2, 0), (2, −1)</td>
<td>1</td>
<td>B1</td>
<td>Accept without label.</td>
</tr>
<tr>
<td>Triangle in correct position</td>
<td>1</td>
<td>B1</td>
<td></td>
</tr>
<tr>
<td>Enlargement (Scale factor) 3 (Centre) (−3, 2)</td>
<td>3</td>
<td>B1</td>
<td></td>
</tr>
</tbody>
</table>

Total 4 marks

8. (a)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marks</th>
<th>Award</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6, 0, −4</td>
<td>2</td>
<td>B2</td>
<td>Award B1 for any one correct.</td>
</tr>
<tr>
<td>(−1, 6), (2, 0), (4, −4)</td>
<td>2</td>
<td>M1ft</td>
<td>Plot any two points, from table with no ft errors, (dependent on B1).</td>
</tr>
<tr>
<td>correct line</td>
<td>2</td>
<td>A1</td>
<td>Straight line joining (−1, 6) to (4, −4) or better.</td>
</tr>
<tr>
<td>(c)</td>
<td>2</td>
<td>M1</td>
<td>Draw lines $x = −1$ and $y = 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td>Correct region identified (R need not be labelled). Accept shaded or unshaded.</td>
</tr>
</tbody>
</table>

Total 6 marks

9. (a)

<table>
<thead>
<tr>
<th>Expression</th>
<th>Marks</th>
<th>Award</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 ÷ 4 oe</td>
<td>3.5</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>4 (cms) = 100 000 (cms) or $4 : 100 000$</td>
<td>2</td>
<td>M1</td>
<td></td>
</tr>
<tr>
<td>or $100 000 \div 4$ or 1 (km) = 0.00004 (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or $1 : 0.00004$ or “3.5” $\times 10^5 \div 14$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1 : 25 000$</td>
<td>2</td>
<td>A1</td>
<td></td>
</tr>
</tbody>
</table>

Total 4 marks
10. (a)
228 – 180 (=48)
or 360 – 228 (=132) then 180 – 132
\[048 \]
M1 Can be marked on diagram.
i.e Full method leading to correct answer.
A1 Accept 48

(b)
110
B1

(c)
228 – 118 (=110)
(180 – “110”) ÷ 2 (= 35)
“48” + “35”
\[083 \]
M1ft bearing from (a) + 35
A1 accept 83

Total 5 marks

11. (a)
1.21 \times 10^9 + 7.48 \times 10^7 + 5.2 \times 10^6
\[1.29 \times 10^9 \]
M1 Intention to add 3 correct numbers or digits 1 290 ...
A1 cao Must be in standard form.

(b)
(1.21 \times 10^9) ÷ (3.29 \times 10^6)
\[368 \]
M1 awrt 368 (367.781153...)

Total 4 marks
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 12. (a) | \((2 \times 5) + (8 \times 15) + (16 \times 25) + (10 \times 35) + (4 \times 45)\) | | M2 freq x all correct midpoint values stated or evaluated \{do not have to see intention to add\}.
| | | | if not M2 then M1 for freq x consistent point in each interval \((f \times x = 860 \text{ or } 1260 \text{ start & end points})\).
| | | | or M1 for 1 error in list of 10, 120, 400, 350, 180
| | | | or M1 for 4 correct products stated.
| | | 1060 | A1 Accept 26.5 if M2 scored.
| | (b) | | M1
| | | | A1
| | (c) | \((fd=) 12 ÷ (450 - 300) \approx 0.08\) | M1
| | | correct block | A1 Area block from 300 to 450 grams at height 4 small squares
| | | | Total 7 marks
| 13. (a) | \(\text{Gradient } = \frac{12 - 4}{0 - 10} \text{ or } \frac{8}{-10} \text{ oe}\) | | M1
| | | \(y = -0.8x + 12 \text{ oe}\) | B2 \(5y + 4x = 60 \text{ oe}\)
| | | | If not B2 then
| | | | B1 for \(y = -0.8x + "c"\) where \(c = \text{numerical value } \neq 12 \text{ or letter}\)
| | | | or \(5y + 4x = "c"\) where \(c = \text{numerical value } \neq 12 \text{ or letter}\)
| | | | or \(-0.8x + 12 \text{ or } 5y + 4x\)
<table>
<thead>
<tr>
<th>(b)</th>
<th>(-11 = \frac{8}{-10} \times 5 + c)</th>
<th>2</th>
<th>M1ft</th>
<th>Correct substitution into (a) also “5y + 4x” = c or identify y intercept = -7</th>
<th>A1</th>
<th>5y + 4x = -35</th>
</tr>
</thead>
</table>

14. (a) (i)
(a) (ii)
Opposite angles of a cyclic quadrilateral (add up to 180)

| (b) (i) | Angle at the centre/ middle
is twice / (2 times)/ double
angle at circumference/ edge/ perimeter | 136 | 1 | B1 | Allow on diagram. |
| (b) (ii) | | | | B1 | Accept abbreviations if meaning is clear. Withhold mark for incorrect statements. |
| (c) | | | | B1 | Allow on diagram. |

Total 5 marks

15. (i)

| “12x^2 - 2” = 1 | 12x^2 - 2 | 2 | B2 | If not B2 then B1 for 12x^2 or -2 |
| x^2 = 3/12 oe | | | | M1ft | only ft ax^2 ± b = 1 |

| 0.5 , 4.5 and
-0.5 , 5.5 | B2 | Award B1 for both x values correct or 1 pair of x and y values correct. |

Total 6 marks

16. (a)

\[v = k\sqrt{x} \text{ oe} \]
\[8 = k\sqrt{25} \text{ oe} \]

| \(v = 1.6 \sqrt{x} \text{ oe} \) | 3 | M1 |
| \(v = 1.6 \sqrt{x} \text{ oe} \) | | M1 |

| Allow \(v = k\sqrt{x} \) if \(k = 1.6 \) is found in (a) or (b). | A1 |

(b) \((v =) \sqrt{56.25}\)

| 12 | 2 | M1ft | Do not ft if \(k = 1 \) |
| | | A1 cao |

Total 5 marks
Problem 17

(a)

- Probabilities shown correctly on tree diagram.

(b)

- $0.6 \times 0.6 \times 0.4$
- 0.144 (oe) 2 M1 A1 Accept 18/125

(c)

- $0.3 + (0.7 \times 0.3) + (0.7 \times 0.7 \times 0.3)$
- 0.657 3 A1

If not M2 then
M1 for 0.7×0.3 or $0.7 \times 0.7 \times 0.3$ or 0.21 or 0.147

Total 6 marks

Problem 18

(a) (i)

- $p + q$ (oe) 1 B1

(a) (ii)

- $2p + 2q$ (oe) 1 B1

(a) (iii)

- $2p + q$ (oe) 1 B1

(b)

- $\sqrt{\left(\sqrt{3}\right)^2 + 1^2}$
- 2 2 M1 A1 cao

Total 5 marks

Problem 19

(a)

- 1.05 selected
- 0.175 selected
- $\sqrt{\frac{1.05}{0.175}}$ (oe) 4 A1 (2.44948) awrt 2.45 dependent on M1

- Allow $\sqrt{6}$ or “x^2 = 6 or 6 (from 1.05 ÷ 0.175)

Total 4 marks
<table>
<thead>
<tr>
<th>Question</th>
<th>Expression</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>(\frac{4(x + 1) - 3(x - 1)}{(x + 1)(x - 1)}) (\frac{4x + 4 - 3x + 3}{(x + 1)(x - 1)})</td>
<td>M1, M1, A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For expressing both fractions correctly with a common denominator. Allow as two separate fractions. For removing brackets correctly in a correct single fraction. Allow (x^2 - 1) in denominator. Allow (\frac{x + 7}{x^2 - 1})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 3 marks</td>
</tr>
<tr>
<td>21.</td>
<td>(130 = \pi \times 4.5 \times l) (l = \frac{130}{4.5\pi}) or (l = 9.1956)</td>
<td>M1, M1, M1, A1</td>
</tr>
<tr>
<td></td>
<td>(\sin (AVO) = 4.5/"9.20" = 0.489..)</td>
<td>For exact expression or answer which rounds to 9.2 For a correct expression for (\sin AVO) or (\cos AVB) (\cos (AVB) = ("9.2"^2 + "9.2"^2 - 9)/ 2 \times "9.2" \times "9.2" = 0.521..) awrt 58.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 4 marks</td>
</tr>
<tr>
<td>22.</td>
<td>(x^2 + (3 - 2x)^2 = 26) (x^2 + 9 - 6x - 6x + 4x^2 = 26) (5x^2 - 12x - 17 = 0) ((5x - 17)(x + 1) = 0) (x = 3.4, y = -3.8)</td>
<td>M2, A1, A1, A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1 for (9 - 6x - 6x + 4x^2) Correct 3 part quadratic Factorising correctly or correct use of quadratic formula Both correct (x) values or 1 correct pairing, dependent on previous M1 4 fully correct values (pairing need not be explicit), dependent on previous M1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 6 marks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total 100 marks</td>
</tr>
</tbody>
</table>