Write your name here

Edexcel Certificate Edexcel
International GCSE

Mathematics A
Paper 4H

Higher Tier

Tuesday 21 May 2013 – Morning
Time: 2 hours

You must have:
Ruler graduated in centimetres and millimetres, protractor, compasses,
pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

● Use black ink or ball-point pen.
● Fill in the boxes at the top of this page with your name,
centre number and candidate number.
● Answer all questions.
● Without sufficient working, correct answers may be awarded no marks.
● Answer the questions in the spaces provided
 – there may be more space than you need.
● Calculators may be used.
● You must NOT write anything on the formulae page.
 Anything you write on the formulae page will gain NO credit.

Information

● The total mark for this paper is 100.
● The marks for each question are shown in brackets
 – use this as a guide as to how much time to spend on each question.

Advice

● Read each question carefully before you start to answer it.
● Check your answers if you have time at the end.
International GCSE MATHEMATICS
FORMULAE SHEET – HIGHER TIER

Pythagoras’ Theorem
\[a^2 + b^2 = c^2 \]

Volume of cone = \(\frac{1}{3} \pi r^2 h \)

Curved surface area of cone = \(\pi rl \)

Volume of sphere = \(\frac{4}{3} \pi r^3 \)

Surface area of sphere = \(4 \pi r^2 \)

adj = hyp \times \cos \theta

opp = hyp \times \sin \theta

opp = adj \times \tan \theta

or \[\sin \theta = \frac{\text{opp}}{\text{hyp}} \]

\[\cos \theta = \frac{\text{adj}}{\text{hyp}} \]

\[\tan \theta = \frac{\text{opp}}{\text{adj}} \]

In any triangle \(ABC \)

Sine rule: \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine rule: \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} ab \sin C \)

Volume of prism = area of cross section \(\times \) length

Circumference of circle = \(2\pi r \)

Area of circle = \(\pi r^2 \)

Volume of cylinder = \(\pi r^2 h \)

Curved surface area of cylinder = \(2\pi rh \)

Area of a trapezium = \(\frac{1}{2}(a + b)h \)

The Quadratic Equation
The solutions of \(ax^2 + bx + c = 0 \), where \(a \neq 0 \), are given by

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
Answer ALL TWENTY THREE questions.

Write your answers in the spaces provided.

You must write down all stages in your working.

1. A box contains four different kinds of chocolates. Debbie takes at random a chocolate from the box. The table shows the probability of Debbie taking an Orange or a Coffee or a Caramel chocolate.

<table>
<thead>
<tr>
<th>Chocolate</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>0.15</td>
</tr>
<tr>
<td>Coffee</td>
<td>0.40</td>
</tr>
<tr>
<td>Caramel</td>
<td>0.35</td>
</tr>
<tr>
<td>Strawberry</td>
<td></td>
</tr>
</tbody>
</table>

(a) Work out the probability that Debbie takes a Strawberry chocolate.

(b) Work out the probability that Debbie takes an Orange chocolate or a Coffee chocolate.

(Total for Question 1 is 4 marks)

2. Green paint can be made by mixing yellow paint and blue paint in the ratio 2 : 3. Wendy makes 15 litres of green paint.

Work out how many litres of blue paint Wendy uses.

(Total for Question 2 is 2 marks)
3 Yoko flew on a plane from Tokyo to Sydney.
The plane flew a distance of 7800 km.
The flight time was 9 hours 45 minutes.

Work out the average speed of the plane in kilometres per hour.

..... km/h

(Total for Question 3 is 3 marks)

4

(a) Describe fully the single transformation that maps shape P onto shape Q.

(b) On the grid, translate shape P by the vector $\begin{pmatrix} -6 \\ 2 \end{pmatrix}$

Label the new shape R.

(Total for Question 4 is 5 marks)
5 (a) Show that \(\frac{7}{8} - \frac{5}{6} = \frac{1}{24} \)

(b) Show that \(\frac{5}{8} + \frac{7}{12} = 1 \frac{1}{14} \)

(Total for Question 5 is 4 marks)

6 Solve \(7y - 6 = 2y + 8 \)

Show clear algebraic working.

\[y = \ldots \]

(Total for Question 6 is 3 marks)
7 Two points, A and B, are plotted on a centimetre grid. A has coordinates $(1, 4)$ and B has coordinates $(8, 2)$.

(a) Work out the coordinates of the midpoint of AB.

\[(\ldots, \ldots)\]

(2)

(b) Use Pythagoras’ Theorem to work out the length of AB.
Give your answer correct to 3 significant figures.

\[\ldots\text{ cm}\]

(4)

(Total for Question 7 is 6 marks)

8 Express 204 as a product of its prime factors.

(Total for Question 8 is 3 marks)
9 (a) Solve the inequalities \(-6 \leq 3x < 9\)

(b) \(n\) is an integer.
Write down all the values of \(n\) which satisfy \(-6 \leq 3n < 9\)

(Total for Question 9 is 4 marks)

10 The scale of a map is 1 : 25 000
On the map, the distance between two railway stations is 22 cm.
Work out the real distance between the two railway stations.
Give your answer in kilometres.

\[
\text{\underline{\text{\hspace{1.5cm} \text{\hspace{1.5cm}} km}}} \\
\text{(Total for Question 10 is 3 marks)}
\]
11 For \(y = x^3 - 6x^2 + 20 \)

(a) (i) show that \(y = 4 \) when \(x = 2 \)

(ii) complete the table of values

<table>
<thead>
<tr>
<th>(x)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>20</td>
<td>15</td>
<td>-7</td>
<td>-12</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) On the grid, draw the graph of \(y = x^3 - 6x^2 + 20 \) for values of \(x \) from -1 to 6
(c) For the curve with equation \(y = x^3 - 6x^2 + 20 \)

(i) find \(\frac{dy}{dx} \)

(ii) find the gradient of the curve at \(x = -3 \)

(Total for Question 11 is 8 marks)

12 The table shows information about the amount of money, in dollars, spent in a shop in one day by 80 people.

<table>
<thead>
<tr>
<th>Money spent (x dollars)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < x ≤ 20</td>
<td>24</td>
</tr>
<tr>
<td>20 < x ≤ 40</td>
<td>20</td>
</tr>
<tr>
<td>40 < x ≤ 60</td>
<td>9</td>
</tr>
<tr>
<td>60 < x ≤ 80</td>
<td>12</td>
</tr>
<tr>
<td>80 < x ≤ 100</td>
<td>15</td>
</tr>
</tbody>
</table>

Work out an estimate for the total amount of money spent in the shop that day.

\[\text{Total amount spent} = \ldots \text{dollars} \]

(Total for Question 12 is 3 marks)
13 The diagram shows an incomplete regular polygon.

The size of each interior angle is 140 degrees greater than the size of each exterior angle.
Work out the number of sides the regular polygon has.
14 The table shows the surface areas, in km2, of five oceans.

<table>
<thead>
<tr>
<th>Ocean</th>
<th>Surface area (km2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic</td>
<td>7.68×10^7</td>
</tr>
<tr>
<td>Indian</td>
<td>6.86×10^7</td>
</tr>
<tr>
<td>Pacific</td>
<td>1.56×10^8</td>
</tr>
<tr>
<td>Southern</td>
<td>2.03×10^7</td>
</tr>
<tr>
<td>Arctic</td>
<td>1.41×10^7</td>
</tr>
</tbody>
</table>

(a) Which of these oceans has the largest surface area?

(b) Work out the total surface area, in km2, of all five oceans.
 Give your answer in standard form.

\[\text{Total surface area} = \ldots \text{km}^2 \] (2)

The total surface area of the Earth is 5.10×10^8 km2.

(c) Express the total surface area of the five oceans as a percentage of the total surface area of the Earth.
 Give your answer correct to 1 decimal place.

\[\text{Percentage} = \ldots \% \] (2)

(Total for Question 14 is 5 marks)
Peter and John play two games of badminton against each other. For each game, the probability that Peter wins is 0.15.

(a) Complete the probability tree diagram.

(b) Calculate the probability that Peter wins both games.
16 The pressure P, of water leaving a cylindrical pipe, is inversely proportional to the square of the radius, r, of the pipe.

$P = 22.5$ when $r = 2$

(a) Find a formula for P in terms of r.

(b) Calculate the value of P when $r = 1.5$

(c) Calculate the value of r when $P = 10$

(Total for Question 16 is 6 marks)
17 The function \(f \) is defined as

\[f(x) = \frac{x - 6}{2} \]

(a) Find \(f(8) \)

(b) Express the inverse function \(f^{-1} \) in the form \(f^{-1}(x) = ... \)

\[f^{-1}(x) = \ldots \]

(2)

The function \(g \) is defined as

\[g(x) = \sqrt{x - 4} \]

(c) Which values of \(x \) cannot be included in a domain of \(g \)?

(d) Express the function \(gf \) in the form \(gf(x) = ... \)

Give your answer as simply as possible.

\[gf(x) = \ldots \]

(2)

(Total for Question 17 is 7 marks)
The histogram shows information about the times, \(t \) hours, for which some cars were left in a car park.

Calculate an estimate for the number of cars which were left in the car park for between 4.5 hours and 8 hours.

(Total for Question 18 is 3 marks)
19 The sides of triangle PQR are tangents to a circle.
The tangents touch the circle at the points S, T and U.
$QS = 6$ cm. $PS = 7$ cm.

(a) (i) Write down the length of QT.

\[\text{\underline{\hspace{2cm}}} \text{ cm} \]

(ii) Give a reason for your answer.

The perimeter of triangle PQR is 42 cm.

(b) Calculate the size of angle PQR.
Give your answer correct to 1 decimal place.

\[\text{\underline{\hspace{2cm}}} \]

(Total for Question 19 is 6 marks)
20 The Venn diagram shows a universal set \(\mathbb{E} \) and 3 sets \(A, B \) and \(C \).

\[A \quad \quad 2 \quad \quad 4 \quad \quad 7 \quad \quad 10 \]

\[B \quad 3 \quad 6 \quad C \]

2, 4, 7, 3, 6 and 10 represent **numbers** of elements.

Find

(i) \(n(A \cup B) \)

(ii) \(n(B') \)

(iii) \(n(A \cap C') \)

(iv) \(n(B' \cap C') \)

(Total for Question 20 is 4 marks)
21

Diagram NOT accurately drawn

$PQRS$ and $PSTU$ are parallelograms.

$\overrightarrow{PU} = \mathbf{a}$ \hspace{1cm} $\overrightarrow{PS} = \mathbf{b}$ \hspace{1cm} $\overrightarrow{PQ} = \mathbf{c}$

Find, in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}

(i) \overrightarrow{TQ}

(ii) \overrightarrow{PX} where X is the midpoint of TQ.

Simplify your answer as much as possible.

(Total for Question 21 is 3 marks)
22 The diagram shows a triangular prism with a horizontal rectangular base $ABCD$.
$AB = 10$ cm. $BC = 7$ cm.
M is the midpoint of AD.
The vertex T is vertically above M.
$MT = 6$ cm.

Diagram NOT accurately drawn

Calculate the size of the angle between TB and the base $ABCD$.
Give your answer correct to 1 decimal place.

(Total for Question 22 is 4 marks)
23 Solve $\frac{3}{(x + 1)} + \frac{2}{(2x - 3)} = 1$

Show clear algebraic working.