Edexcel and BTEC Qualifications
Edexcel and BTEC qualifications come from Pearson, the world’s leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our qualifications website at www.edexcel.com. For information about our BTEC qualifications, please call 0844 576 0026, or visit our website at www.btec.co.uk.

If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Pearson: helping people progress, everywhere
Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for raising achievement through innovation in education. Find out more about how we can help you and your students at:

www.pearson.com/uk

January 2012
Publications Code UG030750
All the material in this publication is copyright © Pearson Education Ltd 2012
Apart from Questions 3, 13(b) and 17(f) (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1. | \[
\frac{4.2}{1.12}
\] | 2 | M1 for 4.2 or 1.12 or 0.6 or \[
\frac{15}{4}
\] | A1 |
| | | | 3.75 | |
| | | | | Total 2 marks |
| 2. | \[
\frac{135}{180}
\] \(0.75\text{ oe}\) | 3 | M1 | |
| | | | 45 | A1 cao |
| | | | | Total 3 marks |
3. \[4x = 7 \text{ or } 4x = 2 + 5 \text{ or } 7x - 3x = 7 \text{ oe} \]
\[4x - 7 = 0 \text{ oe} \]

3 M2 for correct rearrangement with \(x\) terms on one side and numbers on the other AND collection of terms on at least one side
or for \(4x - 7 = 0\) oe
M1 for \(7x - 3x = 2 + 5\) oe
ie correct rearrangement with \(x\) terms on one side and numbers on the other

\[\frac{3}{4} \text{ oe} \]

A1 Award full marks for a correct answer if at least 1 method mark scored

Total 3 marks

4. \[1 \ 7 \ 7 \]

3 B2 for \(1 \ 7 \ 7\) in any order
B1 for three positive whole numbers with either a median of 7 or a sum of 15
SC Award B1 for \(0 \ 7 \ 8\)

6 B1 cao

Total 3 marks

5. One correct point plotted or stated
2nd correct point plotted or stated
Correct line between \(x = -2\) and \(x = 4\)

4 B1 May appear in table
B1 May appear in table
B2 B1 for a line joining two correct, plotted points

Total 4 marks
6. (a) \(1 + 7\) or 8

(b) \(32 \times 45\) or 1440 or 14.4(0)m

7. Fully correct factor tree or repeated division or 2, 2, 5, 5 or \(2 \times 2 \times 2 \times 5 \times 5\)

8. \(y^{3+n-1} = y^6\) or \(y^{3+n} = y^7\) oe

or \(3 + n - 1 = 6\) oe

or \(y^n = \frac{y^7}{y^3}\) or \(y^n = \frac{y^6}{y^2}\) or \(y^n = y^4\)
Question 9

(a) Complete, correct expression which, if correctly evaluated, gives 48 eg
\[
4 \times \frac{1}{2} \times 6 \times 4, \quad 2 \times \frac{1}{2} \times 12 \times 4, \quad \frac{1}{2} \times 12 \times 8
\]

(b) \[4^2 + 6^2 = 16 + 36 = 52\]

\[\sqrt{4^2 + 6^2}\]

Question 10

(i) \[-1 \frac{1}{2} < x \leq 2\]

(ii) \[-1, 0, 1, 2\]

Total 6 marks

Total 4 marks
Question 11

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. (a)</td>
<td>$75 = 3 \times 5^2$ and $90 = 2 \times 3^2 \times 5$ or $1, 3, 5, 15, 25, 75$ and $1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90$ or 3×5</td>
<td>2</td>
<td>M1 Need not be products of powers; accept products or lists ie $3, 5, 5$ and $2, 3, 3, 5$ Prime factors may be shown as factor trees or repeated division</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>(b)</td>
<td>$2 \times 3^2 \times 5^2 \text{ oe eg } 6 \times 3 \times 5^2$ or $75, 150, 225, 300, 375, 450$ and $90, 180, 270, 360, 450$</td>
<td>2</td>
<td>M1 Also award for $\frac{75 \times 90}{15}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total 4 marks</td>
</tr>
</tbody>
</table>

Question 12

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. (a)</td>
<td>Rotation</td>
<td>3</td>
<td>B1 Also accept quarter turn or -270° (B0 for 90° clockwise)</td>
</tr>
<tr>
<td></td>
<td>90°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(0, 0)$</td>
<td>B1 Also accept origin, O</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>R correct</td>
<td>1</td>
<td>B1</td>
</tr>
<tr>
<td>(c)</td>
<td>Rotation 90°</td>
<td>2</td>
<td>B1 Accept quarter turn or -270° instead of 90°</td>
</tr>
<tr>
<td></td>
<td>$(3, 1)$</td>
<td>B1</td>
<td>ft from their R if it is a translation of the correct R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total 6 marks</td>
</tr>
</tbody>
</table>
13. (a) \(4y = 10 - 3x\) or \(-4y = 3x - 10\)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>M1</td>
<td>May be implied by second M1 or by (y = \frac{-3}{4}x + c) even if value of (c) is incorrect. or finds coordinates of 2 points on the line eg ((0, 2.5), x = 2, y = 1,) table, diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M1</td>
<td>or for clear attempt to evaluate (\frac{\text{vert diff}}{\text{horiz diff}}) for their pts</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-\frac{3}{4})</td>
<td>A1</td>
<td>Award 3 marks for correct answer if either first M1 scored or no working shown. (SC) If M0, award B1 for (-\frac{3}{4}) x</td>
</tr>
<tr>
<td>13 (b)</td>
<td>eg (9x + 12y = 30) (\quad) eg (15x + 20y = 50) (\quad) (10x - 12y = 46) (\quad) (15x - 18y = 69)</td>
<td>5</td>
<td>M1 for coefficients of (x) or (y) the same or for correct rearrangement of one equation followed by correct substitution in the other (\quad) (eg\ \ 5x - 6\left(\frac{10 - 3x}{4}\right) = 23)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>(x = 4) (\quad) (y = -\frac{1}{2})</td>
<td></td>
<td>A1 cao dep on M1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1 (dep on 1st M1) for substituting for other variable</td>
<td></td>
</tr>
<tr>
<td>(x = 4,\ y = -\frac{1}{2})</td>
<td></td>
<td>A1 Award 4 marks for correct values if at least first M1 scored</td>
<td></td>
</tr>
<tr>
<td>((4, -\frac{1}{2}))</td>
<td></td>
<td>B1 Award 5 marks for correct answer if at least first M1 scored ft from their values of (x) and (y)</td>
<td></td>
</tr>
</tbody>
</table>

Total 8 marks
Question 14

Part (a)
- 55 115 155 177 190 200
- Total: 1
- B1: cao

Part (b)
- Points correct
- Total: 2
- B1: ±⅓ sq ft from sensible table ie clear attempt to add frequencies

Part (c)
- 26 indicated on cf graph
- Total: 2
- M1: for 26 indicated on cf graph – accept 26-27 inc

Question 15

- $-4 < x < 4$
- Total: 2
- B2: B1 for $x < 4$ or $x > -4$ or $x < \pm 4$
or $x < \sqrt{16}$
- SC: B1 for $-4 \leq x \leq 4$

Total 5 marks

Total 2 marks
Question 16

Part (a)

\[
\frac{3}{8} + \frac{2}{8} \text{ oe}
\]

Marks: 2

Part (b)(i)

\[
\frac{2}{8} \times \frac{1}{7} \text{ appearing once only}
\]

Marks: 5

Part (b)(ii)

\[
\frac{2}{8} \times \frac{3}{7} + \frac{3}{8} \times \frac{2}{7} \text{ or } 2 \times \frac{2}{8} \times \frac{3}{7} \text{ oe}
\]

Marks: 5

Total 7 marks

Note:
- Sample space method – award 2 marks for correct answer; otherwise no marks.
- Sample space method – award 2 marks for correct answer; otherwise no marks.
- Sample space method – award 2 marks for correct answer; otherwise no marks.
- Sample space method – award 2 marks for correct answer; otherwise no marks.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>(a)</td>
<td>2</td>
<td>1</td>
<td>B1 cao</td>
</tr>
<tr>
<td></td>
<td>(b)</td>
<td></td>
<td></td>
<td>x < 6</td>
</tr>
</tbody>
</table>
| | | | | B2 cao B1 for eg $x \leq 6$
| | | | | or $-2, -1, 0, 1, 2, 3, 4, 5$
| | | | | SC B1 for $x > 6$ |
| | (c) | 7 | 1 | B1 cao |
| | (d) | g(0) = 15 | 2 | M1 for 15 seen |
| | (e) | $k = 12$ | 3 | M1 May be stated or indicated on diagram. May be implied by one correct solution. |
| | | | | -0.7 or -0.8 |
| | | | | 3.8 |
| | (f) | \tan drawn at $x = 3.5$ | 3 | M1 \tan or produced passes between points $(3, 3 \leq y \leq 6)$ and $(4, 11 \leq y \leq 14)$ |
| | | vertical difference $\overline{\text{horizontal difference}}$ | | M1 finds their vertical difference $\overline{\text{horizontal difference}}$ for two points on tan or finds their vertical difference $\overline{\text{horizontal difference}}$ for two points on curve, where one of the points has an x-coordinate between 3 and 3.5 inc and the other point has an x-coordinate between 3.5 and 4 inc |
| | | | | 6.5 – 11 inc |
| | | | | A1 dep on both M marks |

Total 12 marks
18. \((\cos x^\circ) = \frac{4^2 + 6^2 - 8^2}{2 \times 4 \times 6} \)
Or \(8^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos x^\circ \)
\((\cos x^\circ) = -0.25 \)
3
M1 for correct substitution in Cosine Rule
A1
104.5
A1 for value rounding to 104.5
(104.4775...)
Total 3 marks

19.
(a)
2
B2 for all correct
B1 for 2 or 3 correct
(b)(i)
10
2
B1 cao
(ii)
25
B1 cao
Total 4 marks

\[\begin{array}{c}
\text{(a)} \\
2 \\
B2 for all correct \\
B1 for 2 or 3 correct \\
(b)(i) \\
10 \\
2 \\
B1 cao \\
(ii) \\
25 \\
B1 cao \\
\end{array} \]
20. \[\pi \times r \times 9 = 100 \text{ oe} \]
\[(r =) 3.53677\ldots \text{ A1 for 3.53} \]
\[\sqrt{9^2 - 3.53^2} \text{ M1} \]
\[(h =) 8.2759\ldots \text{ A1 for 8.27} \]
\[\text{A1 for answer rounding to 108} \]
\[(\pi \to 108.40\ldots, 3.14 \to 108.45\ldots) \]
\[\text{If both M1s scored, award 5 marks for an answer which rounds to 108} \]

Total 5 marks

21. (a) \[8y^8 \text{ B2 B1 for 8} \]
(b) \[2^p \times (2^3)^q = 2^p \times 2^{3q} = 2^{p+3q} \]
\[p + 3q \text{ B2 B1 for } 2^{5q} \text{ seen} \]

Total 4 marks

22. (a)(i) \[3\mathbf{a} + 3\mathbf{b} \text{ oe} \]
(ii) \[2\mathbf{a} + 2\mathbf{b} \text{ oe} \]
(iii) \[\mathbf{a} + 2\mathbf{b} \text{ oe} \]
(b) \[\overrightarrow{DF} = 2\mathbf{a} + 4\mathbf{b} \text{ oe} \]
\[\overrightarrow{DF} = 2 \overrightarrow{DE} \text{ oe} \]
\[\overrightarrow{DE} = \overrightarrow{EF} \text{ A1} \]

Total 5 marks