

Mark Scheme (Results)

January 2022

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Publications Code 4MA1_2HR_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- o isw ignore subsequent working
- SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent

- o awrt answer which rounds to
- o eeoo each error or omission

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown. If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

International GCSE Maths

Apart from Questions 3b, 13, 17 and 18 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1 (a)	1 - (0.24 + 0.16 + 0.38) oe		2	M1
		0.22		A1 oe
(b)	0.24 + 0.16 = 0.4 oe		2	M1
		0.4		A1 oe
				Total 4 marks

2	(a)	$720 \div 12 (= 60) \text{ or } 78 \times 12 (= 60)$	= 936)		4	M1	
		78 – '60' (= 18)	$'x' \times 720 = 936$			M1	
		or '936' – 720 (= 216)	P				
			or $720(1+\frac{1}{100}) = 936'$				
			or $720(1+\frac{P}{100}) = '936'$ or $('x'=)\frac{'936'}{720} (=1.3)$ oe				
		'18' ×100 or '216' ×100	'1.3'×100-100 oe			M1 complete method to	find P
		$\frac{-100 \text{ or } -100 \text{ or } -$	or (1.3–1)×100			1	
				30		A1 ignore extra % sign if	given by
	(1.)	0.10 1.00 (.200)			2	candidate.	3.50 6 4.5
	(b)	$0.18 \times 1600 \ (= 288) \ \text{oe}$	•		3	M1 if 1600 × 18%	M2 for 1.5 ×
		or $0.82 \times 1600 + 800 (= 211)$	2)			seen, must have further	12.5 (= 18.75)
						processing of the 18%	or
						or the value (288)	18 ÷ 1.5 (= 12)
		0.127 (1.500 000) (200				given.	
		$0.125 \times (1600 + 800) (= 300)$				M1	
		or $(1600 + 800) \times 0.875 = 2$	2100)				
				Coupon B		A1 for Coupon B and	
				and correct		288 and 300 or	
				figures seen		18.75(%) and 18(%) or	
						12(%) and 12.5(%) or	
						2112 and 2100	
							Total 7 marks

3 (a)	4y > 12 - 5		2	M1 Allow $y = \frac{7}{4}$ oe or $y > -\frac{7}{4}$ or $y < \frac{7}{4}$
		$y > \frac{7}{4}$		A1 oe
(b)	$12x - 10$ or $2(6x - 5) = 4x - 7$ or $6x - 5 = \frac{4}{2}x - \frac{7}{2}$ oe		3	M1 for removal of fraction and multiplying out LHS or rearranging to remove the fraction or separating fraction (RHS) in an equation
	$12x - 4x = -7 + 10 \text{ oe}$ or $6x - \frac{4}{2}x = -\frac{7}{2} + 5 \text{ oe}$			M1 ft (dep on 4 terms) for terms in <i>x</i> on one side of equation and number terms on the other
		$\frac{3}{8}$		A1 (dep M1) oe
				Total 5 marks

4	$360 \div 8 = 45$ or $360 \div 5 = 72$ or $180 - (360 \div 8) = 135$ oe or $180 - (360 \div 5) = 108$ oe		4		on diagram – but terior and acute if ing a pair of interior
	'135' - '108' (= 27)			or pair of exterior an <i>IBC</i> Angle may be seen	
	$\frac{180 - '27'}{2} (= 76.5)$			M1	
		76.5		A1	
					Total 4 marks
5	$7200 \times 0.025 = 180$ or $7200 \times 1.025 = 7380$ oe or $7200 \times 1.075 = 7740$ oe or $7200 \times 0.075 = 540$ oe		3	M1	M2 for $7200 \times (1.025)^3$
	(7200 + '180') × 0.025 (= 184.5) and (7200 + '180' + '184.5') × 0.025 (= 189.1125) and 7200 + '180' + '184.5' + '189.1' (= 7753.6125)			M1 NB year end values are 7380 and 7564.5(0) 7753.6125	
		7754		A1 answer in range	
					Total 3 marks

6	(a)		1	1	B1
	(b)		6	1	B1
	(c)	206 + m - 214 = -3 oe		2	M1 allow $7^{206+m-214} = 7^{-3}$ oe (must be in
		or $\frac{7^{-3} \times 7^{214}}{7^{206}}$ or $\frac{7^{211}}{7^{206}}$ oe	1	,	M1 allow $7^{206+m-214} = 7^{-3}$ oe (must be in the form $7^x = 7^y$ where x and y are
		$\frac{1}{7^{206}}$ or $\frac{1}{7^{206}}$ or	1	,	correct expressions)
			5		A1 accept 7 ⁵
					Total 4 marks

7 (a)		y = -3x + 5 oe	2	B2 fully correct equation eg $y = -3x + 5$ or $y - 5 = -3(x - 0)$ If not B2 then B1 for $y = -3x + a$ with $a \ne 5$ or $y = bx + 5$ ($b \ne 0, -3$) or $(L =) -3x + 5$
(b)	Lines (solid or dashed) $x = 6$ and $y = 2$ drawn		3	B1 The lines $x = 6$ and $y = 2$ should extend far enough to intersect with each other.
	Line (solid or dashed) $y = x + 1$ drawn			B1 The line should extend from at least $x = 1$ to $x = 6$ or far enough to intersect with their horizontal and vertical lines.
	Region R shown (shaded or not shaded) 8 Region R shown (shaded or not shaded)	Correct region identified		B1 dep on B2
				Total 5 marks

8	$22 \times 260 = 5720$ or $50 \times 218 = 10900$		3	M1
	$\frac{'10900' - '5720'}{28} \left(=\frac{5180}{28}\right)$			M1
		185		A1
				Total 3 marks

9	$\cos 30 = \frac{24}{(AC)} \text{ or } \sin'60' = \frac{24}{(AC)}$ or $\frac{\sin'60'}{24} = \frac{\sin 90}{(AC)}$ $(AC =) \frac{24}{\cos 30} (= 16\sqrt{\beta} = 27.712) \text{ or}$ $(AC =) \frac{24}{\sin'60'} (= 16\sqrt{\beta} = 27.712)$ or $(AC =) \frac{24 \times \sin 90}{\sin'60'}$		5	M1 for correct trig ratio involving AC M1 for a correct trig ratio for AC	M2 for use of tan and Pythagoras to obtain AC ($AB = $) 24 tan 30 (=13.856) and $\sqrt{13.856^2 + 24^2} = (=27.712)$ If not M2, then M1 for use of tan and Pythagoras to obtain AC^2 ($AB = $) 24 tan 30 (=13.856) and $13.856^2 + 24^2 = (=768)$
	$\frac{1}{2} \times 2 \times \pi \times 3 (= 3\pi = 9.424)$			M1 for using $\pi \times 2 \times 3$	for $2\pi \times 3$
	'27.712' + '9.424' – 2×3			M1 for a complete	e method to find the length AFEDC
		31		A1 accept answer	rs in range from 31 to 31.15
					Total 5 marks

or $42\ 000\ 000\ 000 \div 8\ 700\ 000\ (=4827.58)$ or $3\ 700\ 000\ 000 \div 630\ 000\ (=5873.01)$ $\begin{array}{c} 5873.01' - 4827.58' \ (=1045.42) \\ \hline \text{or } \frac{42000000000}{8700000} - \frac{3700000000}{630000} \end{array}$ $\begin{array}{c} \text{M1 dep on M1} \\ \end{array}$ $\begin{array}{c} \text{M1 dep on M1} \\ \end{array}$ $\begin{array}{c} \text{A1 Answer in range } 1045 - 1045.5 \\ \text{or } 1.045 \times 10^3 \text{ to } 1.0455 \times 10^3 \end{array}$					Total 3 marks
or 42 000 000 000 ÷ 8 700 000 (= 4827.58) or 3 700 000 000 ÷ 630 000 (= 5873.01) '5873.01' - '4827.58' (= 1045.42) or 42000000000 - 3700000000			1045		
or 42 000 000 000 ÷ 8 700 000 (= 4827.58)		or $\frac{42000000000}{20000000000000000000000000$			M1 dep on M1
10 $(4.2 \times 10^{10}) \div (8.7 \times 10^{6}) (= 4827.58) \text{ or}$ 3 M1	10	$(3.7 \times 10^9) \div (6.3 \times 10^5) (= 5873.01)$ or $42\ 000\ 000\ 000 \div 8\ 700\ 000 (= 4827.58)$		3	M1

(b) y 12 6 3 2 1.5 1.2 1				1			1	1	1			
(b) (b) (c) (c) (d) (e) (e) (e) (e) (e) (f) (e) (e	11 (a)	\boldsymbol{x}	0.5	1	2	3	4	5	6	Correct table	2	B2 for all 4 correct values oe (ie ⁶ or ³)
Correct graph 7 points joined by a smooth curve. 10		y	12	6	3	2	1.5	1.2	1			
7 points joined by a smooth curve. 10 10 10 8 11 10 10 10 10 10			1	1	1	I.		I	l I	=		(B1 for 2 or 3 correct values)
	(b)	12	*							7 points joined by a	2	M1ft (dep B1 in (a)) for 6 or 7 points plotted correctly using their values (within the circles on overlay). May be implied by curve passing through correct point. A1ft only allow one incorrect value from the table in (a), and for a curve that is decreasing throughout for $x = 0.5$ to $x = 6$. Ignore graph to the right of $(6, 1)$ and to
Total 4 marks		0		2	4		6	x				
												Total 4 marks

12	$\tan' x' = \frac{30.7 - 6.2}{244} \text{ or } \tan' x' = \frac{244}{30.7 - 6.2}$ or $\sqrt{244^2 + '24.5'^2} \left(= \sqrt{60136.25} = 245.2 \right) \text{ and}$ $\sin' x' = \frac{'24.5'}{\sqrt{60136.25'}} \text{ or } \cos' x' = \frac{244}{\sqrt{60136.25'}}$ $\tan^{-1} \left(\frac{'24.5'}{244'} \right) \text{ or } 90 - \tan^{-1} \left(\frac{244}{24.5'} \right)$		3	M1 for suitable trig expression for their choice of variable <i>x</i> to represent either of the (non right-angle) angles in the triangle.
	$\tan^{-1}\left(\begin{array}{c} 124.5 \\ -244 \end{array}\right) \text{ or } 90 - \tan^{-1}\left(\begin{array}{c} 244 \\ -24.5 \end{array}\right)$			M1 using a suitable trig expression to find the angle of depression.
	or $\sqrt{244^2 + 24.5^2} \left(= \sqrt{60136.25} = 245.2 \right)$			or for using Pythagoras to find hypotenuse and a suitable trig expression to find the angle of depression.
	and $\sin^{-1}\left(\frac{'24.5'}{\sqrt{60136.25'}}\right)$ or $\cos^{-1}\left(\frac{244}{\sqrt{60136.25'}}\right)$			
	or $\cos^{-1}\left(\frac{'245.2'^2 + '24.5'^2 - 244^2}{2 \times '245.2' \times '24.5'}\right)$			
		5.7		A1 answers in the range 5.65 to 5.75 SC B2 for 84.3 (or in the range 84.25 to 84.35) or 264.3 (or in the range 264.25 to 264.35) given as answer.
				Total 3 marks

13	$\sqrt{8} + 4 - (\sqrt{8} - 4)(= 8)$ and $\sqrt{8} + 4 + (\sqrt{8} - 4)(= 2\sqrt{8} = 4\sqrt{2})$	$(a+b)(a-b) = a^{2} - b^{2}$ and $(\sqrt{8}+4)^{2} - (\sqrt{8}-4)^{2}$		3	M1 for correct substitutions into expression for $a+b$ and $a-b$ or expand the expression to get a^2-b^2 and substitute into this expression.
	$(8')(2\sqrt{8'})$ or $\sqrt{2048}$ or $16\sqrt{8}$ or	32 √2 or 8 √82 or			M1 (dep M1)
	8√8×4 oe				
			8		A1 (dep both M marks)
					Total 3 marks

14 (a)		48	1	B1 allow 47 – 49
				Accept $\frac{n}{110}$ where <i>n</i> is in the range $47 - 49$
(b)		46	1	B1 allow 45.5 – 46.5
(c)	40 and 56		2	M1 for both values. LQ of $40 - 41$ and UQ in the range $56 - 58$.
				or for use of 15 and 45 (eg indicated by marks on horizontal axis that correspond to 15 and 45 on the vertical axis.) or for use of 15.25 and 45.75 (eg indicated by marks on horizontal axis that correspond to 15.25 and 45.75 on the vertical axis.
		16 to 18		A1 accept 16 to 18
(d)		Yes and	1	B1ft dep on M1 in (c) but ft their reading of the horizontal axis.
		correct reason		For stating yes and the <u>IQR</u> for the <u>Algebra</u> test is <u>greater</u> than
				IQR for the Geometry test oe
				If using value in (c) less than 9, only accept 'no' and <u>IQR</u> for the
	(0. (50) (10)		2	Algebra test is <u>less</u> than the IQR for the Geometry test oe.
(e)	60 - '50' (= 10)		3	M1 may be seen embedded as $\frac{10}{60} = \frac{1}{6}$ oe
				(eg reading of 50 from graph stated or indicated by marks on
				vertical axis that correspond to 64 on the horizontal axis).
				Allow $60 - 50' - 1 (= 9)$ oe
	$\frac{10'}{60} \times \frac{10'-1}{59}$			M1 for use of $\frac{n}{60} \times \frac{n-1}{59}$ with any integer n such that $2 \le n \le 59$
		3		A1 (
		118		Allow $\frac{6}{295}$ (= 0.02 or better) if using $\frac{9}{60} \times \frac{8}{59}$
				Total 8 marks

15	$n^2t^3 = 4d + t^3$	$n^2 = \frac{4d}{t^3} + 1$		4	M1 for multiplying by the denominator or for dividing the RHS by t^3
	$t^3\left(n^2-1\right) = 4d \text{ oe}$	$n^2 - 1 = \frac{4d}{t^3}$			M1 for isolating terms in t^3 and factorising the correct expression of the equation or for isolating the $\frac{4d}{t^3}$ term
	$t^3 = \frac{4d}{\left(n^2 - 1\right)}$ oe	$t^3 = \frac{4d}{\left(n^2 - 1\right)}$			M1 for making t^3 the subject
			$t = \sqrt[3]{\frac{4d}{\binom{n^2-1}{}}}$		A1 oe eg. $t = \sqrt[3]{\frac{-4d}{(1-n^2)}}$ or $t = \left(\frac{4d}{(n^2-1)}\right)^{\frac{1}{3}}$ SC B2 for $t = \sqrt[3]{\frac{4d}{(n^2+1)}}$
					Total 4 marks

16	$\frac{1}{2} \times 45 \times 36 \times \sin'C' \ (= 405)$	alternative $\frac{2 \times 405}{36} (= 22.5)$ or $\frac{2 \times 405}{45} (= 18)$	5	M1 correct substitution into the sine area formula, with their choice of symbol to represent <i>C</i> . or work out the perpendicular height with <i>BC</i> or <i>CD</i> as the base.
	$\sin'C' = \left(\frac{405 \times 2}{45 \times 36}\right)('C' = 30)$ oe	$\sqrt{45^2 - 22.5^2} \left(= \sqrt{1518.75} = 38.97 \right)$ or $\sqrt{36^2 - 18^2} \left(= \sqrt{972} = 31.17 \right)$		M1 correct rearrangement to make sin <i>C</i> the subject or use Pythagoras with their found perpendicular height.
	$(BD =)\sqrt{45^2 + 36^2 - 2 \times 45 \times 36 \times \cos'30'}$ $(=\sqrt{3321 - 3240 \times \cos'30'})$ $(=\sqrt{515.077} = 22.695)$	$\sqrt{('38.97'-36)^2 + 22.5^2} \left(= \sqrt{515.077} \right)$ or $\sqrt{('45'-31.17)^2 + 18^2} \left(= \sqrt{515.077} \right)$		M1 (dep on 1st M1, ft 30) correct expression for <i>BD</i> ft their <i>C</i> (must be less than 90°). or use Pythagoras to find an expression for <i>BD</i> .
	$\cos' ABD' = \left(\frac{22.695^2 + 19^2 - 28^2}{2 \times 22.695 \times 19}\right)$ leading to 'ABD' =			M1 for a complete method to find angle <i>ABD</i>
	or $(BAD =) \cos \left(\frac{28^2 + 19^2 - '22.695'^2}{2 \times 28 \times 19} \right)$ (= 53.7) and $\sin 53.7'$			
	(= 53.7) and $\sin' ABD' = \frac{\sin' 53.7'}{22.695'} \times 28$ leading to 'ABD' =		83.9	A1 accept 83.85 – 83.9 Total 5 marks

17	Line drawn at (2, 1) with a positive gradient		3	M1 for a tangent drawn at $x = 2$
	that does not intersect the curve at any other			
	point.			
				M1 (dep M1) for a correct method to work out the
				gradient of the tangent.
		1.5 to 3		A1 for 1.5 to 3
				accept answers in the range $1.5 - 3$ so long as a
				tangent at $x = 2$ has been drawn.
				Total 3 marks

18	$3y^2 + 7y + 16 = (2y-1)^2 - (2y-1)$	$3\left(\frac{x+1}{2}\right)^{2} + 7\left(\frac{x+1}{2}\right) + 16 = x^{2} - x$		5	M1 substitution of linear equation into quadratic.
	E.g. $y^2 - 13y - 14 = 0$ oe	E.g. $x^2 - 24x - 81 (= 0)$ oe			A1 (dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c = 0$
	$y^2 - 13y = 14$	$x^2 - 24x = 81$			allow $ax^2 + bx = c$
	E.g. (y-14)(y+1) (= 0) or $(y=) \frac{-(-13) \pm \sqrt{(-13)^2 - 4 \times 1 \times -14}}{2}$ or $\left(y - \frac{13}{2}\right)^2 - \left(\frac{13}{2}\right)^2 = 14$ oe	E.g. (x+3)(x-27) = 0 or $(x=) \frac{-(-24) \pm \sqrt{(-24)^2 - 4 \times 1 \times -81}}{2}$ or $\left(x - \frac{24}{2}\right)^2 - \left(\frac{24}{2}\right)^2 = 810e$			M1 (dep on M1) for the first stage to solve their 3-term quadratic equation (allow one sign error and some simplification – allow as far as $ \frac{13 \pm \sqrt{69 + 56}}{2} \text{ or } \frac{24 \pm \sqrt{576 + 324}}{2} $ or eg $\left(x - \frac{24}{2}\right)^2 - 225$ oe
	$(x =) 2 \times '14' - 1 \text{ and } 2 \times '-1' - 1$	$(y =) \frac{'27'+1}{2}$ and $\frac{'-3'+1}{2}$ oe			M1 (dep on previous M1) may be implied by values of <i>y</i> or <i>x</i> that are consistent with a correct substitution.
			(27, 14) and (-3, -1)		A1 for both solutions dep on M2 Must be paired correctly. accept $x = 27$, $y = 14$ and $x = -3$, $y = -1$
					Total 5 marks

19	$(AC =) \sqrt{8^2 + 18^2} \left(= \sqrt{388} = 2\sqrt{7} = 19.697 \right)$ or $(CE =) \sqrt{8^2 + 18^2 + 12^2} \left(= \sqrt{532} = 2\sqrt{33} = 23.065 \right)$ oe		3	M1
	eg tan $ECA = \begin{bmatrix} 12 \\ \sqrt{388} \end{bmatrix}$ or $ \sin ECA = \begin{bmatrix} 12 \\ \sqrt{532} \end{bmatrix}$ or $ \cos ECA = \begin{bmatrix} \sqrt{88} \\ \sqrt{532} \end{bmatrix}$ or $ \sin ECA = \frac{\sin 90 \times 12}{\sqrt{532}} $ or $ \cos ECA = \begin{bmatrix} (\sqrt{888})^2 + (\sqrt{532})^2 - 12^2 \\ 2 \times \sqrt{388} \times \sqrt{532} \end{bmatrix} $ oe			M1 for a correct trig statement with <i>ECA</i> as the only unknown. NB allow use 'x' or other variable in place of <i>ECA</i> .
		31.4		A1 allow 31.3 – 31.5
				Total 3 marks

20	$y = \frac{k}{\sqrt{x}} \text{ or } ky = \frac{1}{\sqrt{x}} \text{ or}$ $x = pT^3 \text{ or } y = \frac{k}{\sqrt{pT^3}} \text{ or}$ $y = \frac{c}{\sqrt{T^3}} \text{ oe}$	Alternative $y^2T^3 = n \text{ oe}$		4	M1 Constant of proportionality must be a symbol such as k or p or c or n $k \neq 1, p \neq 1$ and $c \neq 1$ and $n \neq 1$
	$c = 8 \times \sqrt{25^{3}} \text{ (=1000) oe}$ $27 = \frac{'1000'}{\sqrt{T^{3}}} \text{ and } T^{3} = \left(\frac{'1000'}{27}\right)^{2} \text{ oe}$ $27 = \frac{'1000'}{\sqrt{T^{3}}} \text{ and } T^{\frac{1}{2}} = \left(\frac{'1000'}{27}\right)^{\frac{1}{3}} \text{ oe}$	$n = 8^2 \times 25^3 \ (= 1000000) \text{ oe}$ $T^3 = \frac{1000000}{27^2} \text{ oe}$			M1 dep M1 for rearranging for c or n with $(y =) 8$ and $(T =) 25$ substituted correctly into their equation M1 for substitution of y and a correct rearrangement for T^3 or T^2 or T .
			100 9		A1 oe eg 11 or 11.1 or 9 11.111() Total 4 marks

21	$\pi x^{2} + 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or}$ $9x^{2} = 81\text{ oe}$ $\mathbf{or} \ 2\pi x \times 3x + \frac{1}{2} \times 4\pi x^{2} = 81\pi \text{ oe or } 8x^{2} = 81$		6	M1 for setting up an equation (in a single variable ie <i>x</i> or <i>r</i>) for the total surface area of the shape or for the curved surface area.
	$\left(x=\right)\sqrt{\frac{81}{9}}\left(=3\right)$			M1 solving their equation in the form $kx^2\pi = 81\pi$ (where k follows correctly from their surface area) to find x
	$\pi \times 3^{2} \times 3 \times 3^{2} + \frac{1}{2} \times \frac{4}{\pi} 3^{3} \text{ oe}$ $(= 81\pi + 18\pi = 99\pi = 311.(017))$			M1 (indep) for substituting their value of <i>x</i> to find the volume of the shape.
	$99\pi \text{ or } 311.(017)$			A1
	840 '311' (= 2.7) oe			M1 (dep on the 3rd M) for using the formula for density
		aluminium		A1 for aluminium and correct working leading to 2.7
				Total 6 marks

22	(gradient $AB = $) $\frac{105}{p - 1} = \frac{10 + 5}{p + 1} = \frac{15}{p + 1}$ or (gradient $BC = $) $\frac{q5}{81} = \frac{q + 5}{8 + 1} = \frac{q + 5}{9}$ or (gradient $AC = $) $\frac{10 - q}{p - 8}$ or	5	M1 for finding the gradient of AB or BC or AC This may be seen embedded in $m_1 \times m_2 = -1$
	$\sqrt{(p-1)^2 + (10-5)^2} \text{ or } (p-1)^2 + (10-5)^2 \text{ or }$ $\sqrt{(8-1)^2 + (q-5)^2} \text{ or } (8-1)^2 + (q-5)^2 \text{ or }$ $\sqrt{(8-p)^2 + (q-10)^2} \text{ or } (8-p)^2 + (q-10)^2 \text{ oe}$		for finding the length of AB or BC or AC (or AB^2 etc)
	• $\frac{15}{p+1} \times \frac{q+5}{9} = 1$ or $\frac{15}{p+1} = \frac{9}{q+5}$ or $9p+15q = -84$ oe • $\frac{10-q}{p-8} = -\frac{6}{7}$ or $6p-7q = -22$ oe • $(p-1)^2 + (10-5)^2 + (8-1)^2 + (q-5)^2 = (8-p)^2 + (q-10)^2$ or $18p+30q = -168$ Alternative for the second point • $\frac{6}{7}p+10 = -8 \times -\frac{6}{7} + q$ oe		 M2 for two out of the three of: using m₁ × m₂ = -1 using the gradient of AC to form an equation. using Pythagoras theorem If not M2, then M1 for one of the equations. Alternative for the second point obtaining this equation by using y = mx + c with coordinates of A and C separately, and then eliminating c)

Elimination	Substitution		M1 (dep M3) for correct method to
E.g. $54p + 90q = -504$	E.g.		eliminate one variable – multiplying
54p - 63q = -198	$(-84-15q)_{-32}$ or		one or both equations so the coefficient
With subtraction	0 $=$ -22 01		of x or y is the same in both, with the
or $153q = -306$	6p-7 $-84-9p$ = -22 or		correct operation to eliminate one
	6p-7 = -22 or		variable (condone one arithmetic error)
or $63p + 105q = -588$	15		
90p - 105q = -330	$9^{(-22+7q)} + 15q = -84 \text{ or}$		or
With the operation of addition	$\left \begin{array}{c} - & - \\ \hline & 6 \end{array} \right $		
or $153p = -918$	$9p+15 \left(\frac{6p+22}{7} \right) = -84$		isolating p or q in one equation and
	9p+15 = -84		substituting into the other (condone one
	(7)		arithmetic error).
		p = -6	A1 for $p = -6$ and $q = -2$
		and	Must be clearly identified
		q = -2	
			Total 5 marks

23	$x^2 - 12x + 25$		4	M1 for substituting $g(x)$ into $f(x)$
	$(x-6)^2-6^2 (+25)$ or $(x-6)^2-11$			M1 ft (dep on M1) for a correct first step in order
				to complete the square. Allow y in place of x .
	or			
				or
	$x^2 - 12x + (25 - y) = 0$ oe or			
	$y^2 - 12y + (25 - x) = 0$ oe			Correctly setting up an equation = 0
	$y^2 - 12y + (25 - x) = 0$ oe			
	$(x-6)^2 = y + 11$ or $(y-6)^2 = x + 11$			M1 ft (dep on M2) for a correct rearrangement for
	(v s) y · 11 62 (s) w · 11			their completed the square quadratic
				men completed the square quadrate
	or			or
	VI			OI .
	$12 + \sqrt{44 + 4(25 + y)}$			correctly substituting into the quadratic formula
	$x = \frac{12 \pm \sqrt{144 - 4(25 - y)}}{2} \text{ oe}$			(allow just + or just – instead of \pm)
	2			(anow just + or just - instead or <u>+</u>)
	or $x = 6 \pm \sqrt{11 + y}$			Allow same equations with x and y swanned
	$01 \times -0 \pm \sqrt{11} \pm y$			Allow same equations with x and y swapped
				A1
		$6 - \sqrt{11 + x}$		A1 oe must be in terms of x and have minus only
				before the square root.
				Total 4 marks

